New Results on Bottom Baryons with CDF II Detector

Igor V. Gorelov (On behalf of the CDF Collaboration)

Department of Physics & Astronomy, University of New Mexico, USA

ICHEP 2012 Melbourne, Australia, 4-11 July, 2012

Motivation

- Baryons with a heavy quark Q as the "nucleus" and a light diquark q_1q_2 as the two orbiting "electrons" can be viewed as the "helium atoms" of quantum chromodynamics (QCD).
- Observations of new heavy baryon states, measurements of masses/widths of heavy baryons provide input to critical tests for different non-perturbative QCD approaches to a spectroscopy of bottom hadron states
 - HQET framework
 - Potential models
 - 1/N_c expansion methods
 - and finally several large scale projects on Lattice QCD calculations
- Goal of the analysis: search for the resonant states in $\varLambda_b^0\pi^-\pi^+$ modes.

The Bottom Baryon States Decaying into Λ_b^0 Singlet

b- Triggers at @1.96 TeV

- Enormous inelastic total cross- section of $\sigma_{
 m tot}^{
 m inel}\sim {
 m 60~mb}$ at Tevatron.
- $\sigma_{\mathbf{b}} \approx$ 20 μ b ($|\eta| <$ 1.0), @1.96 TeV
- Selective three-level triggers
- Trigger on Hadronic Modes: CDF Two Track Trigger
 - Exploit long cτ(b-hadrons)
 - Trigger on ≥ 2 tracks with large $|d_0|$.

\varLambda_b^{*0} Decay Chain and Possible Trigger

$|d_0|$ Resolution \oplus beam-line = 47 $\mu \mathrm{m}$

Analysis Criteria

- Total CDF Luminosity of $\int \mathcal{L} dt \approx 10.0 \, \text{fb}^{-1}$
- Reconstruct inclusive base Λ_b^0 signal in $M(\Lambda_c^+\pi_b^-)$, a pion π_b^- produced in the weak decay $\Lambda_b^0 \to \Lambda_c^+\pi_b^-$.
- Combine Λ_b^0 signal candidates with two soft pions to reconstruct $\Lambda_b^{*0} \to \Lambda_b^0 \pi_{soft}^- \pi_{soft}^+$ candidates.
- require $p_{\Gamma}(\Lambda_b^0)$ to be large to get π_{soft}^{\pm} within the detector kinematical acceptance

• $p_{\rm T}(\Lambda_b^0) > 9.0 \,{\rm GeV}/c, \, ct(\Lambda_b^0)/\sigma_{Ct} > 6.0$

•
$$p_{\rm T}(\pi_b^-) > 1.0 \,{\rm GeV}/c$$
 $N(\Lambda_b^0) \approx 15400$

- $p_{\rm T}(\pi_{\rm soft}^{\pm}) > 0.2\,{\rm GeV}/c$, very loose.
- $|d_0/\sigma_{d_0}|(\pi_{soft}^{\pm}) < 3.0$, w.r.t. primary VX.

 Λ_b^{*0} in CDF II

Fit Model and Scale

We reconstruct A_b^{*0} candidates in a mass difference spectrum: Q value

$$Q = M(\Lambda_b^0 \pi_s^+ \pi_s^-) - m(\Lambda_b^0) - 2 \cdot m(\pi^{\pm})$$

The mass resolution of the Λ_b^0 signal and most of the systematic uncertainties cancel in the Q value spectrum.

- The signal: double Gaussian to model the detector resolution; shape fixed from MC; position Q and N_{cands} floating.
- The background: second order polynomial; floating.
- The full model for the Q value spectra: a single narrow structure on top of a smooth background.
- Use high statistics CDF $D^{*+} \to D^0 \pi^+_{soft}$ sample to analyze the soft pions momentum scale for $\Lambda_b^{*0} \to \pi^-_{soft} \pi^+_{soft}$ candidates.
 - Adjust scale: $Q(\Lambda_b^{*0}) = Q(\Lambda_b^{*0}) 0.28$, MeV/ c^2 ,
 - set 100% syst. uncertainty: -0.28 ± 0.28 (syst) MeV/ c^2

Q- Spectrum and Results: Λ_h^{*0}

The projection of the unbinned LH fit onto the binned distribution of the raw Q spectrum of Λ_h^{*0} candidates.

Λ_b^{*0}		
Parameters	Value , MeV/ c^2	
$Q, \text{ MeV}/c^2$	20.68 ± 0.35	
N, evts	$17.3^{+5.3}_{-4.6}$	

Q scale adjustment applied.

Significance of the Signal: Λ_b^{*0}

Significance Estimate Based on Exp. Data Fits.

- H₁: signal on top of the background.
- \(\mathcal{H}_0 \): background, 2-nd order Chebyshev.
- 2.28 · 10^{-6} or 4.6 σ , see table below.

$-2 \cdot \Delta(\log \mathcal{L})$	ΔNDF	$\text{Prob}(\chi^2)$
$-2 \cdot (-12.99)$	2	$2.28 \cdot 10^{-6}$

Significance Estimate with Stat. Trials

- Generate \mathcal{H}_0 , fit with \mathcal{H}_1
- Search window: $Q \in (0., 50.0) \text{ MeV}/c^2$
- Parameter of Interest: N_{cands}
- Signal position Q floating
- Signal shape fixed
- Background shape floating
- $p = 2.3 \cdot 10^{-4} \text{ or } 3.5\sigma$

Systematics Uncertainties

Source	Value , MeV/ c^2	Comment
Momentum scale	±0.28	propagated from high statistics calibration D^{*+} sample; 100% of the found adjustment value.
Signal model	±0.11	MC underestimates the resolution; choice of the model's parameters
MC resolution stat. uncertainty	±0.012	finite MC sample size induces the stat. uncertainty of the shape parameters.
Background model	±0.03	consider 3-rd, 4-th power polynomials
Total:	±0.30	added in quadrature

Results

Results on Λ_b^{*0} with $\int \mathcal{L} dt \approx 10 \, \text{fb}^{-1}$.

Value	MeV/c^2
Q	$20.68 \pm 0.35 (stat) \pm 0.30 (syst)$
ΔM	$299.82 \pm 0.35(stat) \pm 0.30(syst)$
$M(\Lambda_b^{*0})$	$5919.5 \pm 0.35 (stat) \pm 1.72 (syst)$

To determine the absolute masses for
$$\Lambda_b^{*0}$$
, $m(\Lambda_b^0) = 5619.7 \pm 1.2 \, (\text{stat}) \pm 1.2 \, (\text{syst}), \, \, \text{MeV}/c^2 \, (\text{CDF II}).$

Conclusions

- We have observed the $\Lambda_b^{*0} \to \Lambda_b^0 \pi^- \pi^+$ resonance state in its Q value spectrum
- The significance of the signal for the search window of $(0., 50) \, \text{MeV}/c^2$ is 3.5σ .
- Our result confirms the higher state $\Lambda_b^{*0}(5920)$ of the two recently observed by the LHCb Collaboration and published in *arXiv:1205.3452* [hep-ex].
- The result is consistent with recent theoretical predictions.